
8: Alternative node types

Kevin Gurney

Dept. Human Sciences, Brunel University

Uxbridge, Middx. UK

In the �rst lecture the basic functionality of the most popular arti�cial neuron - the

semilinear unit - was introduced. Thus, the activation a was de�ned as a linear weighted sum

of inputs, a = w �x, and the output y as the sigmoid of the activation y = �(a). Some variants

on this have occurred but the linear-weighted-sum-of-inputs activation has been common to

them all. In this lecture, two alternative families of node are introduced which, at �rst appear

dissimilar, but which may be shown to be essentially equivalent. Their possible connection

with biological neurons is also outlined.

As a step to introducing alternative types of arti�cial neuron, note the following features

of the semilinear node. The input- output function of the unit is de�ned in two stages. First,

there is an activation which is a function of the inputs xi and some internal node parameters �j

(Greek `zeta'); that is, a = a(xi; �j). For all node types discussed so far the internal parameters

are just the weights and the threshold, f�jg = fwk; �g. The second stage consists of modifying

the activation by some non-linearity to produce the �nal output y; that is y = g(a). So far g()

has been either a step function or a sigmoid. This part will be retained - it is the activation

which will be modi�ed in what follows.

1 Cubic Nodes

1.1 Using computer memories to generate the activation

Suppose we restrict ourselves to binary inputs which take the values 0 or 1. Consider now

the computer memory component shown below.

.
. . .

decode
(select
one bit

location)

address latch

0
1
1
0

bit store

inputs output bit

diagram of RAM

1

Neural Nets: 8 2

Such memories are usually referred to as Random Access Memories or RAMs. � The

inputs form an address which is decoded to locate one of the memory cells whose contents,

either a 0 or a 1, are then read out. If there are n inputs there will be 2n possible addresses

since each location in the address may be either a 0 or a 1. There will therefore be 2n memory

cells whose values, in correspondence with their addresses, may be drawn up in a table similar

to the ones used previously to portray the functionality of 2-input TLUs. A 3-input example

is shown below.

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

We may think of the addresses as locating the vertices or sites at the corners of the

n-dimensional hypercube, just as we did for the TLUs. This is the preferred way of viewing

things as it allows a geometric interpretation of generalisation. (next lecture).

(0 0 0) (1 0 0)

(1 1 0)

(1 1 1)(0 1 1)

(0 0 1)

(0 1 0)

(1 01 1)

x3

x1

x2

3-cube of table above

However, the key di�erence now is that we are not restricted to those functions which

are linearly separable; each RAM location is able to be set to either value independently of

the others. This extra functionality may prove useful in solving certain problems and, as

discussed later, at least a subset of it may be involved in biological neural processing. The

�This terminology is now largely a misnomer and is rooted in the historical development of computer

memories, some of which had to be accessed serially rather than allowing access to arbitrary locations at any

time.

Neural Nets: 8 3

further advantage is, of course, the ability to implement our neurons easily in readily available

digital hardware since RAMs are a commonplace component in all conventional computers.

In order to accommodate the RAM-lookup table into the general two stage, activation-

output scheme described above, it is useful to think of the storage cells as containing the

polarised binary values �1 (see notes on Hop�eld storage prescription).

y

a
-1.0 1.0

1.0

hard limiter for a RAM

The operation of a RAM as an arti�cial node now proceeds as follows: A binary input

vector is applied to the RAM and is used as the memory address; the (polarised) binary value

addressed is read out from the site located and this is then `converted' back to its unpolarised

form using a step function. Within the formalism given above, the internal parameters are

now the hypercube site values (memory contents), and the activation is the polarised site

value addressed. The site at address � will be designated S� so that a = a(S�; xi). The

function g(a) is then just step function.

RAMs �gure strongly in the WISARD machine which was developed at Brunel (Alek-

sander and Stonham, 1979). The WISARD uses them in a very speci�c architecture and may

be thought of as a hardware implementation of the n-tuple technique developed by Bledsoe &

Browning (1959). However, our aim here is to show how the basic node structure described

above may be extended and used in conventional network architectures and trained using the

well known algorithms. We shall refer to nodes based on the RAM-lookup table model as

cubic nodes in order to emphasise the geometric view which thinks of them as de�ned by a

population of values at the vertices of the n-cube.

1.2 Writing the activation in closed form

The key that enabled us to develop training algorithms for semilinear nodes was the ability

to make explicit the form of the activation

a(wi; xi) =
nX

i=1

wixi (1)

That is, it is a `well-behaved' function of the weights and the inputs which may be

manipulated according to normal mathematical procedures. We could then evaluate the

gradients, for example, of an error with respect to the weights y. At the moment the activation

for cubic nodes is just a lookup table - there is no expression corresponding to the right hand

side of (1). As a step towards such a closed expression, consider a 2-input cubic node. There

yAlthough we didn't actually do this in the lectures - only plausibility arguments were given - this is the

route for a rigorous derivation of BP and the delta rule

Neural Nets: 8 4

are four site values fS00; S01; S10; S11g, and I now claim that the following is an expression for

the activation

a = S00(1� x1)(1� x2) + S01(1� x1)x2 + S10x1(1� x2) + S11x1x2 (2)

The reason for this is that for any input (address), only one of the product terms in

the input variables is non-zero. Thus the expression `picks out' the relevant site value or

activation. Consider for example the input factors in the second term (1�x1)x2. This is zero

unless x1 = 0; x2 = 1, that is we have the input (0,1), and then it is just equal to 1. In this

case, by similar arguments, all the other input products in the other terms are zero. So we

compute a = S01 which is what is required.

The expression in (2) may be made more symmetrical in the inputs if we use their

polarised form. To highlight this we place a `bar' over the values so that the inputs are now

denoted by (�x1; �x2). The relation between the two forms is

xi =
1

2
(�xi + 1) (3)

Then substituting this in (2)

a = S00
(1� �x1)

2

(1� �x2)

2
+ S01

(1� �x1)

2

(1 + �x2)

2
+

S10
(1 + �x1)

2

(1� �x2)

2
+ S11

(1 + �x1)

2

(1 + �x2)

2
(4)

The pattern of signs in the brackets is clearly determined by the pattern of 1s and 0s

in the address � of the site associated with these terms. Thus, if the address � is written out

in terms of its polarised components as ��1��2, then the general term in (4) is given by

S�
(1 + ��1�x1)

2

(1 + ��2�x2)

2
(5)

In the general n-input case we have

a =
1

2n

X

�

S�

nY

i=1

(1 + ��i�xi) (6)

The symbol � (greek upper case `pi') means `product' and all terms under it are mul-

tiplied together.

1.3 Training cubic nodes: loss of information and its solution

Cubic nodes get trained by changing their site values. Let `+' denote an increment operation -

change the site value to 1, and `-' a decrement operation - change the site value to -1. Suppose

a sequence of training steps occurs for a site of the form + + � + + + + + +�, that is 8

increments and 2 decrements. The �nal value of the site is given by the last training operation,

in this case a -1. However, it is clear that training is trying, on average, to increment the site;

we are losing information. The solution - as noted as long ago as 1962 by Bledsoe & Blisson

(Bledsoe and Blisson, 1962) - is to allow the site to take on more than two values. Thus,

we allow sites to take values in the range (�Sm;�Sm + 1; : : : ;�1; 0; 1; : : : Sm � 1; Sm). Now,

Neural Nets: 8 5

applying the same training sequence to a site with Sm = 10, starting with S� = 0 we get the

following values for the site as it is trained: 1,2,1,2,3,4,5,6,7,6. The output function needs to

re
ect this
exibility and we now make use of a sigmoid rather than the hard-limiter.

population of
values at
sites of
hypercube

Output bit

Input address
latch

η 0.5

1.0
P(Y=1)

Output bit generation

Sη

Full cubic node with sigmoid output

Of course, to work with these nodes mathematically it is necessary to assume that the

sites are continuous, just as the weights were for semilinear nodes. Only then does it make

sense to take gradients, etc. with respect to the site values. In any implementation however,

we would allow only discrete site values as described above, so that we may take advantage of

RAM technology. Using site values that may only take on a set of discrete values introduces

noise into learning since the exactly computed site changes cannot be made.

1.4 Working with analogue inputs

Clearly we can't simply apply non-binary numbers to the inputs of a cubic node; there has

to be a binary address in order to locate one of the sites on the cube. The way out is to

communicate analogue values by stochastic bit streams (recall stochastic semilinear nodes).

The result is that the �xi get reinterpreted as `polarised probabilities' (simply probabilities

rescaled to the interval [-1, 1]). Full details may be found in (Gurney, 1992a; Gurney, 1992b).

2 Sigma-Pi nodes

Consider a 3 input semilinear unit. Its activation is

a = w1x1 + w2x2 + w3x3 (7)

This supposes that each input contributes to the activation independently of the others.

That is, the contribution to the activation from input 1 say, is always a constant multiplier

(w1) times x1. Suppose however, that the contribution from input 1 depends also on input

2 and that, the larger input 2, the larger is input 1's contribution. The simplest way of

modelling this is to include a term in the activation like w12x1x2 where w12 > 0 (for a

diminishing in
uence of input 2 we would, of course, have w12 < 0). In general we might have

terms containing all possible pairs of inputs and also a term in the three inputs together

a = w1x1 + w2x2 + w3x3 +

w12x1x2 + w13x1x3 + w23x2x3 +

w123x1x2x3 (8)

Neural Nets: 8 6

In general for n-inputs

a =
NX

k=1

wk

Y

i2 I
k

xi (9)

where Ik is the kth in a series of index sets, each of which contains one of the possible

2n selections of the �rst n integers. There are therefore 2n `weights' in this type of node. The

presence of the `sigma' and `pi' symbols together here gives rise to the term sigma-pi units.

(PDP vol 1 page 72-74). Now, although the terms contain products of inputs, there are no

powers of each input greater than one; this gives rise to the name multilinear for the terms in

this kind of expression. Nodes with multilnear terms are also sometimes called higher- order

nodes, since their activation depends on terms whose multiplicative order is greater than one.

Comparison of (9) and (6) shows that they are super�cially similar. In fact, after a

little manipulation, the latter expression may be cast in exactly the same form as the �rst.

Thus, cubic nodes may be thought of as a kind of sigma-pi node (Gurney, 1992b).

3 Biological neurons and sigma-pi units

The stereotypical synapse shown below is the inspiration for most neural net modelling and

was introduced in lecture 1. It consists of an electro-chemical connection between an axon

and a dendrite - hence it is an axo-dendritic synapse

dendrite

axon

[axo-dendritic synapse]

However there is a large variety of synaptic types and connection grouping (See for

example, Dayho� ch. 8 for a review). Of special importance here are the pre-synaptic

inhibitory synapses of the serial variety and clusters of densely packed axo- dendritic synapses

dendrite

axon1 axon2

[presynaptic inhibition]

Neural Nets: 8 7

Here the e�cacy of the axo-dendritic synapse between axon 1 and the dendrite is modu-

lated (inhibited) by the activity in axon 2 via the axo-axonic synapse between the two axons.

This might therefore be modelled by a quadratic term like w12x1x2

dendrite

axon

axon

axon

axon

[synapse cluster]

Here the e�ect of the individual synapses will surely not be independent and we should

look to model this with a multilinear term in all the inputs.

4 Pruning sigma-pi units: the multi-cube node

Consider a cubic node with n-inputs. There are 2n sites. For n = 8 this gives 256 sites.

For n = 32 this gives 232 � 109 sites. Clearly there is an explosion of the number of sites

as n grows which is not only impractical from an implementation point of view, but also

suspect from a theoretical viewpoint: do we really need to make use of all the functional

possibilities available in such nodes? (remember problem sheet 2, and how the number of

functions increases as the number of inputs).

One way of overcoming this is developed in theMulti-cube unit or MCU (Gurney, 1992a;

Gurney, 1992b) where several small cubes sum their outputs to form the activation.

Σ

. . .

sigmoid

Individual
cubes

[MCU]

Neural Nets: 8 8

This also has a biological analogue in relation to the synaptic clusters described above.

The small cubes are supposed to correspond to these clusters which then sum their contri-

butions linearly. Mathematically, in terms of the sigma-pi form, we are limiting the order of

terms that are used. So for example, if the cubes all have just 4 inputs, there can only be

terms containing, at the most, products of 4 inputs.

5 The terminological Tower of Babel...

I have used the term `cubic node' to denote one in which the activation is found by looking

up the value at the corner of a hypercube. I do this to give an implementation-free viewpoint

although, as we have seen, the nodes are equivalent to a RAM lookup with several bits stored

at each memory location. Because of Aleksander's emphasis on the hardware, he and his

group accent the RAM-based approach and talk of RAM-nets. Further, when talking about

the multivalued site nodes with sigmoidal output, they talk of Probabilistic Logic Nodes or

PLNs. Aleksander has also tried recently to emphasise the distinction to be made with normal

weighted units by referring to them as `weightless' nodes. However, the sigma-pi equivalence

that I have noted would lead me to counter this by saying that they are far from weightless!

John Taylor has his own set of acronyms which is centered on that for `probabilistic RAM'

or pRAM'.

There was almost a consensus about 3 years ago when everyone agreed to call them

generically `digital nodes' since they could be implemented using digital hardware. This was

pretty sensible and therefore seems to have been abandoned!

A more complete exposition of the cube based (implementation-free) approach may be

found in (Gurney, 1989) which is available in a (physically) more compact form as a Technical

Memo.

Neural Nets: 8 9

References

Aleksander, I. and Stonham, T. (1979). Guide to pattern recognistion using random-access

memories. Computers and digital techniques, 2:29 { 40.

Bledsoe, W. and Blisson, C. (1962). Improved memory matrices for the n-tupel pattern

recognition method. IRE Transactions on Electronic Computers, EC11:414 { 415.

Bledsoe, W. and Browning, I. (1959). Pattern recognition and reading by machines. In

Proceedings of the Eastern Joint Computer Conference, pages 225 { 232.

Gurney, K. (1989). Learning in networks of structured hypercubes. PhD thesis, Dept. Elec-

trical Engineering, Brunel University, Uxbridge, Middx, UK. Available as Technical

Memorandum CN/R/144.

Gurney, K. (1992a). Training nets of hardware realisable sigma-pi units. Neural Networks,

5:289 { 303.

Gurney, K. (1992b). Weighted nodes and ram-nets: A uni�ed approach. Journal of Intelligent

Systems, 2:155 { 186.

