Main Principles of E2K Architecture

Boris A. Babayan
Elbrus International
boris.babayan@elbrus.ru

July 31, 2001

The high level goal of E2K architecture is to
build a FAST COMPATIBLE and RELI-

ABLE Computer.

1 FAST & COMPATIBLE Com-
puter

As it is well known, the computer architecture is tech-
nology driven in a great degree.

1.1 CISC

In the early days of computing, when computer archi-
tects could not afford to use even a moderate volume
of hardware, all operations were executed strongly
sequentially, furthermore, each instruction and oper-
ation were split in smaller pieces, which also were
executed sequentially, under the micro-program con-
trol. That was a typical CISC era of computing.

1.2 RISC

Exponential technology growth gave more hardware
available for computer design and the microprogram-
ming approach became obsolete, all operations be-
came hardware implemented, but still the operations
were executed sequentially. There were no enough

13

resources to execute operations in parallel. That was
an era of a single issue, pre-superscalar RISC archi-
tecture.

1.3 Single Issue Scheduling Problem

Before we will proceed to the next stage of computer
architecture, I would like to discuss a little the process
of creating executable binaries and the way of their
usage on different computer models.

An executable binary includes a full description of a
program algorithm, all operations and all data de-
pendencies. This means that for each operation it is
clear which operation results are used as arguments
for this precific operation. A little bit less evident is,
what specific resources of the given computer model
should be used for execution of resources of a specific
model for execution of specific operations from the
program code binary is done.

For the described above presuperscalar CISC and
RISC single-issue engines the situation was quite ev-
ident. The instruction sets of these computers are
sequential by their nature — each instruction con-
sists of a single operation and the whole program im-
plies sequential execution of these instructions. A
single-issue engine looks for a compiler, like a com-
puter with a single execution unit. So, all operations
from the program code should be appointed or sched-
uled to this single unit and ought to be executed in
a sequence predeterminded by the binary code.



14

Main Principles of E2K Architecture

For LOAD/STORE RISC architecture parallel exe-
cution of LOAD operation was introduced,creating a
special optimization problem, which was and still is
being solved by optimizing compilers. But neverthe-
less, the instruction issue process was still sequential.

Up to this point in the computer industry, the com-
pilers of software vendors could do resources schedul-
ing (strictly sequential) at the time of compilation
and, what is extremely important, this schedule was
(and is) valid for all different models (which differen-
t technical characteristics of resources) of the same
platform.

For Single-issue computers the distributed binaries
represent, besides the program algorithm, a detailed
schedule of computational resources quite efficient for
all models of a specific platform.

1.4 Multiple Issue

With the progress of technology multiple issue com-
puters have become feasible. This means that now
with this hardware the same distributed sequential
binaries cannot include a detailed resource schedule,
but only a correct program algorithm. The reason
is very simple. Computer vendors usually deliver a
new model maybe each half a year, in average, but
the program binaries are updated much rarely. The
same distributed binaries must be executed on many
different computer models of the same platform, but
for a multiple issue engine capable of parallel execu-
tion of different operations, a specific resource sched-
ule should be substantially different for a different
computer model with a different resource structure,
unlike a single-issue engine.

1.5 Superscalar

To cope successfully with this problem the computer
architects have developed dynamic scheduling hard-
ware and a new stage of computer architecture his-
tory has been started. That was (and actually, still

is) a superscalar era. The very first commercial su-
perscalar has been delivered by the Elbrus team long
before. But for in the West, the superscalar approach
became popular early 1990s.

Each individual superscalar computer, in its hard-
ware, using th same distributed binary of a program
code, during the program execution in real time dy-
namically appoints specific resources of this computer
(execution units, register file locations, etc.) to each
algorithm entity (operations, register locations, bus-
es, etc.)

In presuperscalar computers each code instruction
represents a real physical time step of an executable
program; a reference to register location implies a
real physical register location; a reference to opera-
tions (op code) implies a real physical execution unit
(though a single one in a presuperscalar case).

Superscalar hardware considers all references in an
instruction as references to virtual resources and dy-
namically appoints to them the real ones.

The instruction sequence becomes virtual (out-of-
order execution), register reference — virtual (reg-
ister renaming), execution unit — virtual (selection
of one of the parallel physical units).

This dynamic scheduler tries to load, when it is possi-
ble, many available parallel hardware resources of this
computer model. In many cases with this approach
it becomes possible to issue many instructions at a
time, which results in a substantial speed increase.
Only a coarse schedule is used form the distributed
binaries, detailed scheduling is done locally.

Many today’s superscalars can issue up to 6 instruc-
tions at a time, and the average number of instruc-
tions executed in each clock is about 2 for integer
jobs.

A positive point here is that this dynamic schedul-
ing control adapts and schedules a single binary code
to a specific resources structure of different computer
models of the same platform. Wide use of the super-



FREE SOFTWARE, Vol 1, Issue 02, Feb 2002

15

scalar architecture shows clearly that it is impossible
to include into the distributable binaries an efficient
schedule of resources for different computer models
with parallel hardware.

1.6 Superscalar Drawbacks

While so far this approach has been rather successful,
it, nevertheless, has substantial drawbacks. It works
well for certain level of hardware parallelism, when
the hardware volume is not so big. When it exceeds
this level, the job of resource scheduling becomes so
complicated that its execution in a real time limits
the speed of the computer.

The problem is even more complicated, because to be
able to do the job of scheduling a superscalar engine
must do an appropriate analysis to find out whether
a specific optimization of the resources is applicable
at this point. This analysis typically tries to discover
certain data dependencies, which can prevent some
optimizations.

The time slot favorable for superscalar microproces-
sors spans early 1990s till present time. But today
this architecture has reached its limit.

As an example, th execution engine of ALPHA-464,
according to the published papers, can be built with
an issue rate equal to 8, but the control unit can not
do analysis and scheduling in time. Thus, ALPHA-
464 designer introduced 4 independent program coun-
ters with independent analysis units (no need of the
data dependences analysis between 4 streams) to
feed 8-way execution engine (SMT) — each program
counter will use only a part of the available hardware
parallelism. This approach should not be regarded as
a proper solution of the problem, because it does not
speed up a single integer stream, but on the contrary,
it even slightly slows it down.

Due to the exponential growth of technology, we can
predict a very rapid growth of the available hardware
parallelism, which will make the superscalar approach

obsolete, and which makes the problem of resources
scheduling even more challenging.

1.7 Elbrus Approach

To help use hardware parallelism in a greater degrees
and to speed up future computers in accordance with
the growing technology, the Elbrus team developed a
new approach, which should signify the next stage in
computer architecture progress.

The main innovation of this approach is that the job
of analysis, optimization and scheduling is moved in
a great degree from hardware to software.

The computer takes the distributed binaries, say, of
x86 platform and, before their execution transpar-
ently for the user, statically in software, schedules
the available resources of this particular computer for
execution of this specific program.

Each model of Elbrus, like a superscalar, takes a sin-
gle for all models binary and tailors, adopts it, makes
scheduling to the specific resources of a given mod-
el. But unlike th superscalar, it makes this mainly
in software, rather than in hardware. This helps to
improve efficiency substantially.

In today’s sperscalar engines software is unable to do
this, because the real resources are not under control
of the executable binaries.

For our new computer to be able to directly schedule
the resources, the program code should address these
real resources directly, like in a presuperscalar com-
puter. But unlike it, the today’s computer includes a
big number of executable resources working in paral-
lel, so now each instruction should be wide enough to
include possible specification of many resources work-
ing in parallel. This means that this new approach,
as a direct consequence, implies a wide instruction
approach.

It does not mean that all scheduling job is done nec-



16

Main Principles of E2K Architecture

essarily in the software. This scheme allows enough
flexibility. We can implement a part of the scheduling
work in hardware, and a part in software with the goal
to reach the highest efficiency. We will discuss the
problem of dynamic-static scheduling tradeoffs later.

This looks like a well-known process of binary compi-
lation from one instruction set (x86) to another (El-
brus). But actually, our process differs substantially.

e Traditional binary translation (BT) compiles one
known ISA to another, also known, both of which
have been designed well before and independent-
ly of the BT itself. This leads to inefficiency and
low reliability (not all programs can be translat-
ed correctly. A special HW support can solve
(and, actually, solves in the Elbrus case) this
problem and makes BT reliable and efficient.

e For efficiency reason, all primitive operations of
a new computer are designed to be 100% com-
patible with the target architecture (x86), except
for the rarely used ones, which can be emulated.

e The main goal of this binary code transformation
is the resources scheduling. The main goal of the
traditional BT is code porting, without precise
resource scheduling.

The general way in which this computer works can
be presented as follows.

When it tries to execute new x86 binaries, the system
(special HW and system SW) detects automatically
that there is no stored binary compiled schedule and
starts dynamic compilation and execution. It creates
an optimized version of the compiled code and store
it for future execution. In case of the next call of
the same program, the already optimized code will
be used for execution.

A very important point is that the while process is
transparent for the user. It looks for him like he is
using a traditional x86 computer.

Another important point is that with this special H-
W and SW system support, the execution is highly
efficient and 100% reliable — all codes executable on
a regular x86 computer, work in the same way on the
new computer.

The essence of our approach is that we introduce two
interfaces:

e the first one is a common distributive, open
for everybody, say, x86 or a specially designed
Portable Object Code;

o the second one is ISA of each model, for internal
use only, showing all resources to the compiler;

With local translation from one interface into another
and local resource scheduling during translation.

Some concluding reasoning.

The main superscalar problem to be solved is the fol-
lowing. On the one side, we should be able to do
more complex scheduling for more complicated and
parallel hardware of today and future. On the other
side, we should decrease the complexity of hardware.
This looks a little bit contradictory. So, a natural
solution is to move this complicated scheduling work
into software. Anyway, this scheduling work should
be done either in hardware or in software. Moving it
into software we are not increasing the amount of the
work, instead, we are even decreasing it substantially,
because we do it only once during compilation, while
a superscalar is doing it repeatedly.

We can assume that a possible solution should be as
follows. To include in the distributive more infor-
mation which helps to do the hardware scheduling
simpler. Unfortunately, it does not work. First, it
contradicts to the problem of binary compatibility.
We can change nothing in x86 binaries. But even if
we are bold enough to introduce the new binaries, it
is hardly possible to have enough information useful
for any possible future models with different sizes and
structures of resources. Kach new resource structure



FREE SOFTWARE, Vol 1, Issue 02, Feb 2002

17

needs its specific scheduling optimization and, like in
an optimizing compiler, each optimization needs it-
s own specific analysis. Thus, to have a distributive
suitable for all future unknown modes is just a science
fiction.

So, it looks like the only possible solution of the prob-
lem is the Elbrus approach.

It can be named as “ExpLicit Basic Resources
Utilization Scheduling”, or ELBRUS for short. And
this approach should signify new technology period
in computer industry.

1.8 Dynamic versus Static Scheduling
Tradeoff

Now we would like to discuss a proper tradeoff be-
tween dynamic and static scheduling.

As has been stated already earlier, for single issue
engines common static scheduling is not a problem.

For small number of units able to work in parallel,
a superscalar dynamic resource scheduler works well
and does not limit the execution speed.

But for a bigger number of parallel units, the job
of algorithm analysis and resource scheduling grows
quadratically. This work must be done each clock, so
very soon it becomes a speed-limiting factor and can
lead to the speed degradation.

On the other side, a static scheduler has other draw-
backs.

<« P.1 Computer spends some time for compilation.

<« P.2 Some disk space should allocated for the opti-
mized compiled code of the frequently used programs.

<« P.3 While it can ensure a top most efficient usage
of statically behaving resources, it cannot take into
consideration real dynamic situations, cache misses
and so on.

Even for today’s program, time spent for compilation
is a small part of the whole time spent for execution.
This has been confirmed by Transmeta experience.
Crusoe uses dynamic compilation only — it compiles
each program from a scratch before each program ex-
ecution and even with this approach they have quite
affordable speed.

In the Elbrus case we are using static compilation,
that means that in most cases we are executing stati-
cally compiled well-optimized version of code without
these small losses at all.

Moreover, over the time, with the progress of tech-
nology, while computer became faster, computer ex-
ecutes much more instructions in a time unit, so the
ratio between number of dynamically executed oper-
ations in a single program run and number of opera-
tions (static) in the same program code grows rapid-
ly. This moves tradeoff point in favour of software
scheduling approach with progress of technology.

The disk space for a compiled program is rather small
as compared with the today’s disk unit’s capacity,
which will be growing even in greater degree with
time.

Moreover, the size of this space is under system con-
trol, because in accordance with some strategy, rarely
used optimized codes can be removed and recompiled
again if needed.

In case all hardware resources have precise stati-
cally predictable behavior, th approach of software
scheduling ensures a close to the best resources usage
and code efficiency. Unlike the hardware scheduler in
superscalars, in this case th compiler can analyze a
big portion of the program and optimize it nearly up
to a possible limit. It does it only once for each specif-
ic piece of the program, while the superscalar repeats



18

Main Principles of E2K Architecture

it each time this code is being executed, burning extra
heat and slowing down the execution.

There is only one parameter of a computational re-
source, which behavior is difficult, if possible at all, to
predict precisely during compilation. This is a mem-
ory system READ latency.

Besides the traditional means of improving this pa-
rameter, like memory hierarchy (caches), the Elbrus
project has implemented a number of innovations re-
sulting in the losses decrease to a negligible value.
These are the following improvements.

e LOAD hoisting across basic blocks and above
ambiguous STORs (Using speculative LOADs
and disambiguation memory);

e A big register file to keep the preLOADed data;

e Branch preparation for preLOADing target in-
structions;

e Array prefetch buffer, (FIFO buffer for asyn-
chronous preLOADing array elements)(An ele-
ment of dynamic scheduling);

e Explicit handling of cache misses by the program
code, supplying two separate schedules: for hits
and for misses;

These arrangements by means of preLOADing and
explicit scheduling reduce the job memory latencies
prediction to the worst cases and make static schedul-
ing very efficient.

In rare cases (due to introduction of the above mea-
sures) of miss prediction, the computer uses a tradi-
tional scoreboarding technique, which is also a piece
of the dynamic scheduler.

So, as a result, today a real tradeoff between the dy-
namic and static scheduling is in a great degree in
favour of the static one and due to the technology
progress will be further moving to static in the fu-
ture.

1.9 E2K Architecture Advantages

Besides the high speed this approach has many out-
standing advantages.

1. Simplicity.

As a result of removing from th hardware such
complicated mechanisms as out-of-order execu-
tion, register renaming, speculative execution
and branch prediction, a computer becomes con-
ceptually as simple as presuperscalar RIRCs.

2. Small die size. The same reason as above results
in a substantially smaller die size.

3. Good cost/performance.

Result of high speed and small die size.

4. High clock frequency.

Conceptual simplicity leads to the ability of high
clock frequency implementation.

5. Better use of high technology.

Proper use of a big number of transistors is s-
traightforward.

6. More efficient compilation.

While the compilation process is not simple one,
it is easier to reach high efficiency, because, un-
like a superscalar, precise resources behavior is
known at a compile time.

7. Regular design approach.

Control unit simplicity and freedom to change
the instruction set for different models, leads to
quite a regular design approach. We are design-
ing the data paths of a computer first, without
any limitations from the control unit. These da-
ta paths can be designed with a top performance
according to its internal logic. Then we design
the instruction set, which fully uses these data
paths. This means that:

e The design process is easier: data paths and
control logic are designed independently;



FREE SOFTWARE, Vol 1, Issue 02, Feb 2002

19

e The data paths (and as a result the comput-
er itself) can be designed with a top most
efficiently.

8. Testing (and correctness proof) of hardware is
simpler.

In a superscalar the same instruction works in
different environments depending on the differ-
ent dynamic prehistory of different runs. Rather
a long prehistory can influence the execution of
this instruction. For good testing we should try
a big number of these combinations. In our case
all dependences are within the length of our short
pipeline.

9. Scalability.

This system delivers the best scalability, because
the job of tailoring to a specific model is moved
into the software.

10. Multiplatform implementation.

Due to the usage of binary compilation it is pos-
sible to support many architecture platforms in
the same computer.

1.10 Alternative Approaches

Now we are going to discuss other attempts to over-
come the limitations of the traditional superscalar ap-
proach. There are only two such cases in the industry:
[A-64 of Intel and Crusoe of Transmeta.

1.10.1 Intel IA-64

The basic principle of operation of IA-64 is very close
to earlier superscalars — no out-of-order execution,
no register renaming and no implicit speculative ex-
ecution. Computer executes all instructions in order,
but using a grouping logic tries to execute as much
consecutive instructions at a time as possible without
violation of the data dependences. It also inherited
from the superscalclar branch prediction mechanism.

The main difference from the superscalar is that IA-
64 made public (introduced in distributed instruction
set) all internal techniques used by th out-of-order
superscalar for dynamic local resources scheduling:

e Speculative execution of instructions including
LOAD hoisting;

e Grouping logic;

e Disambiguation memory, etc.

Using these techniques, the compiler, which gener-
ates a distributive, can do nearly all-scheduling work,
which out-of-order superscalar engine is doing dy-
namically in each mode in the run time.

In IA-64 the distributive instruction sequence is
chopped into groups, consisting of the independen-
t instructions, which can be issued concurrently. As
we will show later, it can be done efficiently only with
some assumption about the real available resources of
a specific model.

For proper use of the available resources the compiler
introduces enough speculative and predicated opera-
tions. In correspondence with the available resources
and real memory system latencies the compiler moves
up some LOADs, using somtims a speculative mode
or disambiguation memory. All these optimization-
s have real sense, when we know real available re-
sources.

FEach model can execute not the while group neces-
sarily, but its part only, according to the resources
available in the model at this point. But the com-
puter cannot issue instructions from different groups
in the same clock. This is the only possible way of
adaptation to a specific model. We will show later
that it is less than enough.

The wrong point is that the distributive is a code op-
timized for one specific model only. TA-64 removed
from the superscalar approach the mechanisms of
adaptation to a specific model without any substi-
tution (we cannot regard a partial group execution



20

Main Principles of E2K Architecture

as something adequate). It is dangerous, especially
in terms of the rapidly growing chip fabrication tech-
nology posing a great challenge to the architecture
designers.

The authors of TA-64 either decided that all future
models will be based of the same resource scheme
(which is unrealistic), or they decided that it will be
OK for everybody to heavily lose the efficiency run-
ning a program compiles for one model on another
one. Actually, this means that [A-64 computers will
run (typically) a code optimized for some previous
model with a corresponding loss of efficiency. So, for
a regular user we should deduct at least 25% of speed
from th officially declared values.

As it can be clearly understood from th above discus-
sion, the scalability problem in IA-64 has been solved
on a very poor level. But the efficient compatibili-
ty has not been addressed at all (in TA-64 proper).
These two problems are quite close to each other.

[A-64 suggests for compatibility the implementation
for both (x86 and TA-64) ISets in one chip (“two in
one”). Having in mind poor scalability of TA-64, the
natural generalization of IA-64 compatibility solution
for future models is to include all previous models in
the current chip.

TA-64 looks like a superficial, shallow E2K copy, im-
plemented without even understanding of the deep
roots leading to this solution.

Now a few examples, showing bad scalability of IA-
64:

1. The following two pictures below show th ex-
amples, which prove clearly that it is impossible
to do efficient grouping of instructions without
precise knowledge of the computer width. The
picture presents a sequence of instructions with
the width dependencies. Stops show the end of
the groups. The first example shows that for
efficient scheduling in cases of a three-way and
four-way computers we need to select different

orders of instructions, otherwise losses will make
up to 25%.

In the second example to have an efficient
scheduling for four-way and two-way computers
we need to change the STOP positions, though
the sequence of operations is optimal for both
cases, Failure to change the STOP positions will
result in 25% losses again.

. With TA-64 approach it is difficult to introduce

register clusters like in Elbrus-3, E2K, and Al-
pha. The system with clusters needs a special
way of scheduling of instructions issued in each
clock. In this case it is not enough to split the in-
structions into groups issuing in the same clock.
It is necessary to appoint each instruction in a
group to a specific cluster in addition. This job
needs some additional analysis of dependencies.
To avoid extra bubbles we should find out al-
| separate instruction dependencies between the
adjacent groups (this is a good piece of analysis)
and schedule the dependent instructions to the
same cluster.

This information is absent in IA-64 code, so, to
be able to efficiently use the cluster structure we
should either change the instruction set or return
to complex analysis and scheduling to hardware
(like in a superscalar). Even if we change the in-
struction set and include the information about
clusters, it will be O’K only for a specific model.

The resume is either we should return the analy-
sis and scheduling to hardware, and in this case
TA-64 will have the same drawbacks like a super-
scalar, or we will lose all scalability.

. The same situation exists with a two-storeys ex-

ecution unit like in the E2K. We should appoint
a linked instruction to a two-storeys unit, which
needs special analysis and scheduling hardware.

The same resume as above.

. For each specific model width a compiler should

choose an appropriate level of speculation. Ex-
cessive speculation for narrow models means a



FREE SOFTWARE, Vol 1, Issue 02, Feb 2002

21

3 way computer scheduling

Stop S‘mpl Stnpl Stnpl
LS L% A .

L — A e Y,
\ j \ f independent
dependent dependent
4 way computer scheduling
swpl Stop Stop
5 (7 M3 Mo
\, J Y 4 Y 4
depetident \ dependent /‘
Figure 1. 3-way and 4-way computer scheduling
4 way computer scheduling 4 way - 4 clocks

2 way — 8 clocks

Stopl Stupl Stnpl
] A N I = i
- \\ /‘. %y i% 4 = y) . ~ . E L —
3 - . 2 - z - Es i Frd -«

=
o - = - -
~ -~ s
- - b
- N e A S - =
- = e - s sz -
- e L 55F - - e - -

N

-

- -

2 way computer scheduling

Stopl Stnpl Stnpl Stopl
A A @S S a e
L N . - - 3 N ’ . /' ot \ » L T
R B T . T LA o 7 «

N
ailer

=
- -

-

~

- - 7 v 5 ~ - = -
~ ol TR SR AR el - “ -
e - a0 - - ProE - s et - _

4 way - 5 clocks
2 way — 6 clocks

Figure 2. 4-way and 2-way computer scheduling



22

Main Principles of E2K Architecture

speed decrease due to the superfluous opera-
tion execution. Low speculation for wide models
means a speed decrease due to the incomplete
resource use.

Speculative operations are included in IA-64
code. This means that the code is already ori-
ented to a specific computer width. This means
again the lack of the scalability.

5. With the advent of 0.1u technology tightly mul-
ticore chips will be designed. To use this ad-
vantage IA-64 distributive should be recompiled.
Again, the lack of scalability.

It may seem that at a later stage Intel may try to fix
the drawbacks of the TA-64 approach by introducing
binary compilation approach like in the E2K. It is
possible in principle, though the priority in this area
belongs to the E2K authors.

The E2K scheme assumes 2 interfaces (as has been s-
tated above): a distributive binary and an instruction
set of a specific model, with the binary compilation
in between.

But the TA-64 instruction set is poorly suited to both
roles.

It is bad as a distributive, because it consists of many
details dependent of the resource scheme of specif-
ic models, like speculative execution, disambiguation
memory, etc., which should not be presented in a
common distributive.

It is also bad as the instruction set of a specific model,
because it gives no access to physical resources.

1.10.2 Transmeta

Transmeta has taken and implemented this technol-
ogy more consistently. But they use this technology
having in mind different goal.

They are using this technology to deliver a comput-

er, which dissipates low power. This example shows
great power and flexibility of the technology.

Crusoe instruction has four syllables (Elbrus has 16
and up to 23 executable operations at a time), and
it uses dynamic binary compilation only (Elbrus us-
es static compilation as well). So, Crusoe speed has
enough room to grow.

2 RELIABLE COMPUTER

The general reliability of computation can be split to
hardware and software reliability.

2.1 Hardware Reliability

The Elbrus team has big (3 generations of computer
systems and more than 25 years) experience in de-
signing highly reliable hardware logic, but, for some
reason, it is not included into the E2K project now,
though it can be included easily.

We would like now to present basic principles of El-
brus hardware reliability.

All units have extra hardware detecting all single
hardware faults, either intermittent or solid, and sig-
naling about them to the rest of the system.

Each unit has another special hardware, which, in
case of such a signal, automatically without the soft-
ware help, disconnects all signal lines from this faulty
unit.

Then the rest of the system starts the software recov-
ery process. Elbrus line computers are multiprocessor
systems, so , in most cases there are enough units to
continue the work successfully.

This kind of arrangement gives not only a high level
of reliability (the system as a whole has no down time
even in the case of low reliability of “raw” hardware),



FREE SOFTWARE, Vol 1, Issue 02, Feb 2002

23

but a high level of trustworthiness as well.

The system can have intermitter faults — most prob-
ably, it will recover successfully and continue the com-
putation.

If the system cannot recover or if the fault is solid,
most probably, the faulty unit will be excluded from
the system and the rest of the system will continue
the program execution and, eventually, will deliver a
correct result.

In extremely rare cases the system can signal its in-
ability to recover or to continue the execution.

Virtually, there is a zero probability that the system
will deliver some wrong result without any signal of
alarm.

2.2 Software Reliability

Software reliability means that the influence of a bug-
gy and rogue program on the rest of the system must
by excluded.

Software reliability means secure programming. It
ensures:

e FEasier program debugging;

e Substantial decrease of time to market for soft-
ware products;

e Substantial decrease of bugs probability in the
already delivered software systems and , as a re-
sult, decrease of rather dangerous consequences;

e And what is the most important, maybe, the ex-
clusion of the viruses’ danger.

The world society is losing annually many billions of
dollars due to a poor implementation of these features
in computer systems.

And it is very funny that a strong remedy has been
well known to evrydbody maybe from the very begin-
ning of the computer industry. Its implementation is
quite easy and straightforward. Many high-level lan-
guage systems have very convincing practical experi-
ence. The Elbrus team has more than 25 years and
three generations of computers experience of creating
the whole system — high-level language and operat-
ing system.

To introduce this system it is necessary to change
compatibility, this is difficult, but compared to the
tremendous losses from viruses this slight incompat-
ibility looks more than affordable. It is maybe less
than the incompatibility between two versions of the
same program. And we can suggest a very graceful
and painless transition to the new system.

The wisdom is simple — data types (for security
pointers only) should be handled correctly.

Nobody, except for the virus writer with their ma-
licious intentions, wants to violate this simple rule.
But the system must check for proper pointer han-
dling to help debug the programs and stop the virus
writers.

To discuss the subject in a more detail we should do
it separately for memory and for file system.

2.2.1 Memory

Today in popular languages pointers are represented
explicitly by an integer. A user can assign an integer
to a pointer data type. This violates memory protec-
tion.

As a result, two different procedures of programs in
the same virtual space are not protected against each
other. This means:

e Even inside the same program — a bad debug-
ging facility.



24

Main Principles of E2K Architecture

e No memory protection in the same virtual space.

Different programs usually use separate virtual spaces
with a loss of eddiciency and difficulty of communi-
cation and use of common data.

To cope with the problem some languages, like Ja-
va, exclude pointers from the language at all. But it
makes the language non-universal and the program-
ming less efficient.

Our approach is quite different. It can be regarded as
an extension of the Java approach. We are support-
ing data and procedure pointers in hardware, which
makes its use very efficient.

A procedure pointer consists of a reference to the con-
text and a code and is used for procedure calls. The
procedure mechanism (call/return instructions and
parameters passing mechanism) is supported in hard-
ware as memory protection domain. The procedure
context is supported by means of the data pointers.

In the E2K all pointers are marked by a special bit,
which helps hardware to check proper pointer han-
dling. The E2K needs no special memory system —
some extra combinations in ECC code are used in-
stead of keeping this bit.

The main cost of this security hardware is two extra
bit per each 32 bits in CPU and cache chips. It almost
does not slow down the execution speed.

The Elbrus experience shows that this scheme:

e decrease debugging time substantially (by up to
10 times);

e decrease the probability of missing an undetected
bug in the already delivered software.

We have found more than 30 bugs in SPEC
benchmarks, which should be regarded as well-
debugged software.

e ensure perfect protection between separate pro-
cedures in the same virtual space.

You can run safely in the same wvirtual space
any downloaded program, communicate with it
through the parameters, without any danger to
the rest of the program and data located in the
same virtual space.

It gives a good support for implementing a perfect
protection in the file system.

2.2.2 File System

(TYaditional Systems]

Current situation in the file system of traditional op-
erating systems is even worse. The pointer data type
is not introduced there at all. One should use a reg-
ular character string as a file name or a file pointer.
This string deccrives a path to the named file from
the root, common for the whole computer.

This arrangement creates a situation very favorable
for the virus writers trying to introduce viruses.

Suppose we have downloaded a program from Inter-
net and we are going to pass a parameter file to this
program. Moreover, it is possible that inside the pa-
rameter file there are some strings representing other
file names in our file space. This is the reason, which
to the downloaded program the root of our file space
must be given — to be able to run this kind of pro-
grams and to have an access to the parameter files
and their derivatives in our file space. We cannot
even restrict the access to the files with the access
right control mechanism, just because the download-
ed program is run under our name.

It is difficult to imagine a situation more favorable
for the hackers and viruses.

Apart from the virus problem, it is a wrong arrange-
ment from the point of view of regular programmers
practice.

Suppose a programmer (not a virus writer) has cre-



FREE SOFTWARE, Vol 1, Issue 02, Feb 2002

25

ated a problem in, say, a computer A in the file space
of the computer A, and then this program has been
moved to and executed in a computer B. What hap-
pens now? This program will be executed in a dif-
ferent environment, which is wrong from the regular
programmers practice point of view. Only the pa-
rameters should be passed from the user, who called
it, both the rest of the environment should remain
the same.

So, this is inconvenient for the programmers and fa-
vorable for the virus writers.

(Elbrus Approach}

As has already been told, the Elbrus solution is based
on the introduction into the file system of two data
types: a pointer to the file and a pointer to the pro-
gram.

No Additional hardware support is needed to imple-
ment this approach. All pointers are located in dic-
tionaries only. But unlike the traditional root centric
system, this file system is network based. Pointer
to the problem consist of a reference to the program
code file and reference to the dictionary, which repre-
sents the file context for this specific program code.
In a particular case, the context dictionary of all pro-
gram files can coincide with the old root. So, the new
system can be regarded as a strong extension of the
traditional one.

In this system the access rights control becomes op-
tional. The pointer control is more than enough for a
strong and very convenient for the users file system.

We can easily find out that viruses cannot exist in
this system at all. Assume that cross computer file
pointers are implemented in the system.

Suppose a computer and user A downloaded a pro-
gram (created by a user B) from a computer B. Now
this program has an access only to the parameters
passed explicitly by the user A and, probably, to its
own context, if any, from the computer B (through
an inter-computer reference). There is no possibility

to violate the file protection or infect any files from
the computer A.

Though this system substantially differs from the tra-
ditional one from the implementation point of view,
actually, it can be implemented with a very small in-
compatibility from th users’ point of view. Moreover,
we can suggest quite a graceful way of its introduc-
tion.

By the way, it is impossible to solve a virus problem
without introduction of some incompatibilities, just
because today any virus is quite a legal problem, and
to the contrary, a restriction to execute a virus pro-
gram is in a direct contradiction with all language
and system manuals.

Our approach absolutely excluded the virus danger,
unlike the today’s endless practice, when people are
waiting for a next virus to appear and create a treat-
ment for this specific virus only still waiting for the
appearance of the next ones.

There are two ways to inflect the system by viruses:
through bugs in the system software and through the
described above design flaw in the file system.

Elbrus has addressed both, bugs in the system can
be decreased substantially by our memory protection
system and we have a sound suggestion how to im-
prove the file system as well.

Elbrus has big experience in implementation and us-
age of this system (over 25 years and 3 generations of
computers).

We know that introduction of this system into the real
life is a big challenge, but avoiding the virus danger
is even a more challengable problem.

Copyright (©2002 Boris A. Babayan

Verbatim copying and distribution of this entire ar-
ticle are permitted without royalty provided the
copyright notice and this notice are preserved.




26

Main Principles of E2K Architecture

Dear Readers!

The Elbrus team has a sound and convincing experi-
ence in the practical design of commercial universal
computing systems with high security level.

The security level of this technology ensures full pro-
tection against viruses’ danger. It also substantially
improves debugging facility, especially for big soft-
ware systems.

This advantage is vitally important for the whole
computer community today.

Large-scale implementation of this technology needs
no research, but big implementation efforts.

These efforts fit well the free-domain community ac-
tivity.

We will be happy to take part in the discussion that
helps this idea come true.

— Boris Babayan

About the Author Prof. Boris A. Babayan is the
developer of supercomputers in the Soviet Union and
Russia. He leads the E2K development, oversees all
design teams.

Boris Babayan was born on December 20, 1933. In
1958, he graduated from the Institute of Physics and
Technology (the Chair of Computer Technology head-
ed by Academician S.A.Lebedev). During 1958-1996,
he worked in the Institute of Precise Mechanics and
Computer Technology as the Chief Technological Of-
ficer, he is Technical leader of M-40, 5E92b and El-
brus I, IT and III computers. He is the head architec-
ture and logic designer for these systems. He obtained
Ph. D. in 1964.

In 1974, he won the State Prize for development
and implementation of complex equipment for CAD,
manufacturing and control of complex electronics.

And in 1972, he was elected the Doctor of Science.

In 1977, he got the Professor title, and offered lectures
to MPTT students.

In 1984, he became the corresponding member of the
Russian Academy of Science.

In 1987, he won the Lenin Prize for development and
implementation of multiprocessor computing system
Elbrus-2.

Since 1992, he is the Chief Technologist at the MCST.

Since 1997, he is the Chairman at Elbrus Internation-
al.

Since 1998, he is the Director of the Institute of Mi-
croprocessors and Computers of the Russian Acade-
my of Science.

He created over 90 patents, innovations and and he is
the author of publications in processor architecture.
he’s married and has three children: a son and two
daughters.

Prof. Boris Babayan interviewed by Hong Feng, the Chief Edi-
tor of FREE SOFTWARE magazine at Elbrus Office, Moscow,
July 30, 2001.

UL o



